nrf_to_nrf - NRF52 Radio Driver v1.2.2
TMRh20 2023 - OSI Layer 2 radio driver using RF24 API
Loading...
Searching...
No Matches
examples/RF24/GettingStartedEncryption/GettingStartedEncryption.ino
/*
* See documentation at https://nRF24.github.io/RF24
* See License information at root directory of this library
* Author: Brendan Doherty (2bndy5)
*/
#include "nrf_to_nrf.h"
uint8_t myKey[16] = {1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6};
// instantiate an object for the nRF24L01 transceiver
nrf_to_nrf radio; // using pin 7 for the CE pin, and pin 8 for the CSN pin
// Let these addresses be used for the pair
uint8_t address[][6] = { "1Node", "2Node" };
// It is very helpful to think of an address as a path instead of as
// an identifying device destination
// to use different addresses on a pair of radios, we need a variable to
// uniquely identify which address this radio will use to transmit
bool radioNumber = 1; // 0 uses address[0] to transmit, 1 uses address[1] to transmit
// Used to control whether this node is sending or receiving
bool role = false; // true = TX role, false = RX role
// For this example, we'll be using a payload containing
// a single float number that will be incremented
// on every successful transmission
float payload = 0.0;
void setup() {
Serial.begin(115200);
while (!Serial) {
// some boards need to wait to ensure access to serial over USB
}
// initialize the transceiver on the SPI bus
if (!radio.begin()) {
Serial.println(F("radio hardware is not responding!!"));
while (1) {} // hold in infinite loop
}
// print example's introductory prompt
Serial.println(F("RF24/examples/GettingStarted"));
// To set the radioNumber via the Serial monitor on startup
Serial.println(F("Which radio is this? Enter '0' or '1'. Defaults to '0'"));
while (!Serial.available()) {
// wait for user input
}
char input = Serial.parseInt();
radioNumber = input == 1;
Serial.print(F("radioNumber = "));
Serial.println((int)radioNumber);
// role variable is hardcoded to RX behavior, inform the user of this
Serial.println(F("*** PRESS 'T' to begin transmitting to the other node"));
// Set the PA Level low to try preventing power supply related problems
// because these examples are likely run with nodes in close proximity to
// each other.
radio.setPALevel(NRF_PA_LOW); // RF24_PA_MAX is default.
// save on transmission time by setting the radio to only transmit the
// number of bytes we need to transmit a float
radio.setPayloadSize(sizeof(payload)+12); // float datatype occupies 4 bytes + 12 bytes for encryption overhead
//radio.enableDynamicPayloads();
// set the TX address of the RX node into the TX pipe
radio.openWritingPipe(address[radioNumber]); // always uses pipe 0
// set the RX address of the TX node into a RX pipe
radio.openReadingPipe(1, address[!radioNumber]); // using pipe 1
// additional setup specific to the node's role
if (role) {
radio.stopListening(); // put radio in TX mode
} else {
radio.startListening(); // put radio in RX mode
}
// For debugging info
// printf_begin(); // needed only once for printing details
// radio.printDetails(); // (smaller) function that prints raw register values
// radio.printPrettyDetails(); // (larger) function that prints human readable data
radio.setKey(myKey); // Set our key
radio.setCounter(54321); // Set our counter
radio.enableEncryption = true; // Enable encryption
} // setup
void loop() {
if (role) {
// This device is a TX node
unsigned long start_timer = micros(); // start the timer
bool report = radio.write(&payload, sizeof(payload)); // transmit & save the report
unsigned long end_timer = micros(); // end the timer
if (report) {
Serial.print(F("Transmission successful! ")); // payload was delivered
Serial.print(F("Time to transmit = "));
Serial.print(end_timer - start_timer); // print the timer result
Serial.print(F(" us. Sent: "));
Serial.println(payload); // print payload sent
payload += 0.1; // increment float payload
} else {
Serial.println(F("Transmission failed or timed out")); // payload was not delivered
}
// to make this example readable in the serial monitor
delay(1000); // slow transmissions down by 1 second
} else {
// This device is a RX node
uint8_t pipe;
if (radio.available(&pipe)) { // is there a payload? get the pipe number that recieved it
//uint8_t bytes = radio.getDynamicPayloadSize();//
uint8_t bytes = sizeof(payload); // get the size of the payload with 4 bytes subtracted for encryption overhead
radio.read(&payload, bytes); // fetch payload from FIFO
Serial.print(F("Received "));
Serial.print(bytes); // print the size of the payload
Serial.print(F(" bytes on pipe "));
Serial.print(pipe); // print the pipe number
Serial.print(F(": "));
Serial.println();
Serial.println(payload); // print the payload's value
//radio.decrypt(payload,8);
//Serial.print("fin");
//Serial.println(radio.outBuffer[3]);
}
} // role
if (Serial.available()) {
// change the role via the serial monitor
char c = toupper(Serial.read());
if (c == 'T' && !role) {
// Become the TX node
role = true;
Serial.println(F("*** CHANGING TO TRANSMIT ROLE -- PRESS 'R' TO SWITCH BACK"));
radio.stopListening();
} else if (c == 'R' && role) {
// Become the RX node
role = false;
Serial.println(F("*** CHANGING TO RECEIVE ROLE -- PRESS 'T' TO SWITCH BACK"));
radio.startListening();
}
}
} // loop
Driver class for nRF52840 2.4GHz Wireless Transceiver.
Definition nrf_to_nrf.h:115
void startListening(bool resetAddresses=true)
void openReadingPipe(uint8_t child, const uint8_t *address)
bool available()
void setPALevel(uint8_t level, bool lnaEnable=true)
bool write(void *buf, uint8_t len, bool multicast=false, bool doEncryption=true)
void setCounter(uint64_t counter)
void setKey(uint8_t key[CCM_KEY_SIZE])
bool begin()
bool enableEncryption
Definition nrf_to_nrf.h:470
void openWritingPipe(const uint8_t *address)
void read(void *buf, uint8_t len)
void stopListening(bool setWritingPipe=true, bool resetAddresses=true)
void setPayloadSize(uint8_t size)
@ NRF_PA_LOW
Definition nrf_to_nrf.h:54